Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2102383

ABSTRACT

Successful vaccine efforts countering the COVID-19 pandemic are centralized around the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein as viral antigen and have greatly reduced the morbidity and mortality associated with COVID-19. Since the start of this pandemic, SARS-CoV-2 has evolved resulting in new variants of concern (VOC) challenging the vaccine-established immunologic memory. We show that vaccination with a vesicular stomatitis virus (VSV)-based vaccine expressing the SARS-CoV-2 S plus the conserved nucleocapsid (N) protein was protective in a hamster challenge model when a single dose was administered 28 or 10 days prior to challenge, respectively. In this study, only intranasal vaccination resulted in protection against challenge with multiple VOC highlighting that the addition of the N protein indeed improved protective efficacy. This data demonstrates the ability of a VSV-based dual-antigen vaccine to reduce viral shedding and protect from disease caused by SARS-CoV-2 VOC.

2.
Vaccines (Basel) ; 10(3)2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1742755

ABSTRACT

The continued progression of the COVID-19 pandemic can partly be attributed to the ability of SARS-CoV-2 to mutate and introduce new viral variants. Some of these variants with the potential to spread quickly and conquer the globe are termed variants of concern (VOC). The existing vaccines implemented on a global scale are based on the ancestral strain, which has resulted in increased numbers of breakthrough infections as these VOC have emerged. It is imperative to show protection against VOC infection with newly developed vaccines. Previously, we evaluated two vesicular stomatitis virus (VSV)-based vaccines expressing the SARS-CoV-2 spike protein alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV) and demonstrated their fast-acting potential. Here, we prolonged the time to challenge; we vaccinated hamsters intranasally (IN) or intramuscularly 28 days prior to infection with three SARS-CoV-2 VOC-the Alpha, Beta, and Delta variants. IN vaccination with either the VSV-SARS2 or VSV-SARS2-EBOV resulted in the highest protective efficacy as demonstrated by decreased virus shedding and lung viral load of vaccinated hamsters. Histopathologic analysis of the lungs revealed the least amount of lung damage in the IN-vaccinated animals regardless of the challenge virus. This data demonstrates the ability of a VSV-based vaccine to not only protect from disease caused by SARS-CoV-2 VOC but also reduce viral shedding.

3.
EBioMedicine ; 73: 103675, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1596532

ABSTRACT

BACKGROUND: Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There is a critical need to understand the impact of the emerging variants on host response and disease dynamics to facilitate the development of vaccines and therapeutics. METHODS: Syrian golden hamsters are the leading small animal model that recapitulates key aspects of severe coronavirus disease 2019 (COVID-19). We performed intranasal inoculation of SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in the United Kingdom (B.1.1.7, alpha) and South Africa (B.1.351, beta) and analyzed viral loads and host responses. FINDINGS: Similar gross and histopathologic pulmonary lesions were observed after infection with all three variants. Although differences in viral genomic copy numbers were noted in the lungs and oral swabs of challenged animals, infectious titers in the lungs were comparable between the variants. Antibody neutralization capacities varied, dependent on the original challenge virus and cross-variant protective capacity. Transcriptional profiling of lung samples 4 days post-challenge (DPC) indicated significant induction of antiviral pathways in response to all three challenges with a more robust inflammatory signature in response to B.1.1.7 infection. Furthermore, no additional mutations in the spike protein were detected at 4 DPC. INTERPRETATIONS: Although disease severity and viral shedding were not significantly different, the emerging VOC induced distinct humoral responses and transcriptional profiles compared to the ancestral virus. These observations suggest potential differences in acute early responses or alterations in immune modulation by VOC. FUNDING: Intramural Research Program, NIAID, NIH; National Center for Research Resources, NIH; National Center for Advancing Translational Sciences, NIH.


Subject(s)
COVID-19/pathology , SARS-CoV-2/isolation & purification , Transcriptome , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Cricetinae , Dendritic Cells/cytology , Dendritic Cells/metabolism , Disease Models, Animal , Female , Immunity, Humoral , Lung/metabolism , Lung/pathology , Lung/virology , Mesocricetus , Mouth/pathology , Mouth/virology , Nucleocapsid Proteins/metabolism , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
4.
Am J Nurs ; 121(2): 72, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1048444

ABSTRACT

As stories of dying alone from COVID-19 pervade the news, a reminder of the intimacy and love that can surround a hospice patient's last moments.


Subject(s)
COVID-19/nursing , COVID-19/psychology , Hospice Care/psychology , Nurse's Role/psychology , Attitude to Death , Humans , Loneliness/psychology
SELECTION OF CITATIONS
SEARCH DETAIL